Catalytic biomass conversion, valorization of lignin into chemicals and fuels, ionic liquid-mediated green process, bio-based fine chemicals.
1. Design and synthesis of advanced catalytic materials for biomass conversion, particularly lignin valorization.
2. New routes for the conversion of biomass to value-added products, such as heteroatom-participated lignin depolymerization for the generation of benzylamines, pyrimidines, quinoxalines, quinolines, etc.
3. Ionic liquid mediated biomass conversion, such as cellulose hydrolysis and upgrading of bio-based platform compounds.
1. Zhang B., Guo T., Li Z., Kühn F. E., Lei M., Zhao Z., Xiao J., Zhang J., Xu D., Zhang T., Li C.* Transition-metal-free synthesis of pyrimidines from lignin β-O-4 segments via a one-pot multi-component reaction. Nat. Commun. 2022, 13, 3365.
2. Wan K., Tian B., Zhai Y., Liu Y., Wang H., Liu S., Li S., Ye W., An Z.*, Li C.*, Li J., James T. D., Chen Z.*, Structural materials with afterglow room temperature phosphorescence activated by lignin oxidation, Nat. Commun. 2022, 13, 5508.
3. Ding Y., Guo T., Li Z., Zhang B.*, Kühn F., Liu C., Zhang J., Xu D., Lei M.*, Zhang T., Li C. *, Transition-Metal-Free Synthesis of Functionalized Quinolines by Direct Conversion of β-O-4 Linkages, Angew. Chem. In. Ed. 2022, e202206284.
4. Li T., Chen B., Cao M., Ouyang X.*, Qiu X., Li. C.*, Constructing single-atom Ni on N-doped carbon via chelation-anchored strategy for the hydrogenolysis of lignin. AIChE J. 2022, e17877.
5. Diao X.; Ji N.*; Li X.; Rong Y.; Zhao Y.; Lu X.; Song C.; Liu C.; Chen G.; Ma L.; Wang S.; Liu Q.; Li, C.*, Fabricating High Temperature Stable Mo-Co9S8/Al2O3 Catalyst for Selective Hydrodeoxygenation of Lignin to Arenes. Appli. Catal. B: Environ. 2022, 305, 121067.
6. Jia Z.; Ji N.*; Diao X.; Li, C.*, et al. Highly Selective Hydrodeoxygenation of Lignin to Naphthenes over Three-Dimensional Flower-like Ni2P Derived from Hydrotalcite. ACS Catal. 2022. 12, 1338-1356.
7. Wu K.; Li X.; Wang W.*; Li, C.*, et al. Creating Edge Sites within the Basal Plane of a MoS2 Catalyst for Substantially Enhanced Hydrodeoxygenation Activity. ACS Catal. 2022, 12, 8-17.
8. Li X.; Ding Y.; Zhang B.*; Liu X.; Li, C.*, et al. Scission of C–O and C–C linkages in lignin over RuRe alloy catalyst, J. Energy Chem. 2022, 67 492–499.
9. LiuY.; Luo Q.; Qiang Q.; Wang H.; Ding Y.; Wang C.; Xiao J.; Li C.;* Zhang T. Successive Cleavage and Reconstruction of Lignin β-O-4 Models and Polymer to Access Quinoxalines, ChemSusChem, 2022, e202201401.
10. Zhang B., Guo T., Liu X., Kuhn F., Wang C., Zhao Z., Xiao J., Li C.*, Zhang T. Sustainable production of benzylamines from lignin, Angew. Chem. In. Ed., 2021, 60 (38), 20666-20671.
11. Wu K., Wang W., Guo H., Yang Y., Huang Y., Li W., Li C.*; Engineering Co Nanoparticles Supported on Defect MoS2-x for Mild Deoxygenation of Lignin-Derived Phenols to Arenes, ACS Energy Lett., 2020, 5(4): 1330-1336.
12. Jiang L., Guo H., Li C.*, Zhou P., Zhang Z.* Selective cleavage of lignin and lignin model compounds without external hydrogen, catalyzed by heterogeneous nickel catalysts, Chem. Sci., 2019, 10, 4458-4468.
13. Dai T., Li C.,* Lin L., Zhao Z., Zhang B., Cong Y., Wang A.* Selective Production of Renewable para-Xylene by Tungsten Carbide Catalyzed Atom-Economic Cascade Reactions, Angew. Chem. In. Ed., 2018, 57, 1808 –1812.
14. Guo, H. W.; Miles-Barrett, D. M.; Neal, A. R.; Zhang, T.; Li, C.*; Westwood, N. J.*, Unravelling the Enigma of LigninOX: Can the Oxidation of Lignin be Controlled? Chemcial Science 2018, 9, 702-711.
15. Li C., Zhao X., Wang A., Huber G. W., Zhang T.* Catalytic transformation of lignin for the production of chemicals and fuels, Chem. Rev. 2015, 115 (21), 11559-11624.