Dalian Institute of Chemical Physics,Chinese Academy of Sciences
Welcome Campus Map Contact 中文
About Research People International Facilities
Location: Home >> News & Events >> News
DICP Researchers Develop Aziridinyl Fluorophores with Bright Fluorescence and Superior Photostability
  English.dicp.cas.cn    Posted:2016-06-15    From:Group 18T2

Rapid evolution of fluorescence imaging techniques in recent years demands fluorophores with enhanced brightness and photostability. However, many existing fluorophores lack sufficient brightness and photostability for single-molecule and live-cell imaging.

Twisted intramolecular charge transfer (TICT), a process involving the twisting of amino substituents, is one of the major non-radiative de-excitation pathways in fluorophores. Traditionally, TICT is prevented via rigidizing flexible amino substituents. However, such substantial modification often leads to cell-impermeable dyes that are not suitable for intracellular imaging in vivo. In a landmark paper (Nature Methods, 2015, 12, 244–250), Lavis and co-workers show that introducing a four-membered azetidine ring as an electron-donating unit reduces TICT formation rate and affords improved fluorophore brightness and stability, while retaining biological properties of the parent compounds. Yet, this method does not completely suppress TICT formation, especially in highly polar fluorophores.

Dalian Institute of Chemical Physics (DICP) research team led by XU Zhaochao replaced conventional dialkylamino substituents with a three-membered aziridine ring in naphthalimide dyes. And it leads to significantly enhanced brightness and photostability. These results show that the aziridine ring possesses higher TICT resistance than the azetidine ring and other dialkylamino substituents. By incorporating the aziridine ring, the quantum yields of naphthalimide dyes rise from 0 to 43.2% in water, even outperforming its azetidinyl analogue (19.9%).

Researchers replaced conventional dialkylamino substituents with a three-membered aziridine ring in naphthalimide dyes. (Image by LIU Xiaogang)

This simple structural modification permits facile synthesis and further derivatization, and can be applied to a wide range of fluorophores, such as phthalimide, coumarin and 7-nitrobenzofurazan (NBD) dyes, greatly improving both their brightness and stability. This work has been published in J. Am. Chem. Soc.(Text by XU Zhaochao/Image by LIU Xiaogang)

 

Dr. LU Xinyi

Dalian Institute of Chemical Physics, Chinese Academy of Sciences,

457 Zhongshan Road, Dalian, 116023, China,

Tel: 86-411-84379201,

E-mail: luxinyi@dicp.ac.cn 

 

DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES

Welcome
Opportunities
Education

Campus Map
Contact

中文

Dalian Institute of
Chemical Physics, CAS
457 Zhongshan Road
Dalian, China 116023

Copyright 1999-2020. Dalian Institute of Chemical Physics, Chinese Academy of Sciences. All rights reserved.