Dalian Institute of Chemical Physics,Chinese Academy of Sciences
Welcome Campus Map Contact 中文
About Research People International Facilities
Location: Home >> News & Events >> Events Archive
  English.dicp.cas.cn    Posted:2013-04-19
Transport Theory in (Mixed) Protonic Conductors

Time:2013/4/22(Monday), 10:00

Location:Meeting Room on 3rd Foor of SKLC

Prof. Robert J. Kee

 Department of Mechanical Engineering

Colorado School of Mines, Golden, CO 80401, USA 


Mixed conducting ceramics (MIEC), especially those that transport protonic defects, are potentially valuable in applications such as fuel cells and membrane reactors. Doped perovskites (e.g., yttrium-doped barium zirconates and barium cerates) typically involve several charge-carrying defects, including protons, oxygen ions, electrons (i.e., small polarons), and electron holes. This presentation develops a Nernst–Planck–Poisson (NPP) formulation to model the defect transport . The NPP approach offers significant advantages compared to approaches such as ones based on ambipolar diffusion. For example, the present model can represent strongly reducing and oxidizing gas-phase environments across a membrane. The model considers both steady-state and transient behaviors. The presentation uses several example problems to illustrate important aspects of the model. The presentation concludes by identifying approaches for extending and improving the underpinning theory and model implementations.


Robert J. Kee is a George R. Brown Distinguished Professor of Engineering, Colorado School of Mines.  His research efforts are primarily in the modeling and simulation of thermal and chemically reacting flow processes, with applications to combustion, electrochemistry, and materials manufacturing. His fuel-cell research concentrates on elementary chemistry and electrochemistry formulations and their coupling with reactive fluid flow. Primary applications are to solid-oxide fuel cells operating on hydrocarbon fuels. Recent efforts are concerned with fundamental chemistry and transport in rechargeable batteries. His combustion research emphasizes the use of elementary chemical kinetics to understand fundamental flame structure. Recent research includes catalytic combustion, hydrocarbon reforming, and flame-droplet interactions. The materials-processing efforts emphasize the design, optimization, and control of chemical-vapor-deposition processes, with applications ranging from thin-film photovoltaics to CMOS semiconductor devices. All the research includes development of numerical methods and software to solve systems of stiff differential equations. Prof. Kee has published nearly 200 archival papers documenting his research, and he also is the principal architect and developer of the CHEMKIN software, which is the leading software package used worldwide for simulating chemically reacting flow. 

Contact:504  Weiping Wang(9301)



Campus Map


Dalian Institute of
Chemical Physics, CAS
457 Zhongshan Road
Dalian, China 116023

Copyright 1999-2020. Dalian Institute of Chemical Physics, Chinese Academy of Sciences. All rights reserved.